Transplantation of genetically modified cells contributes to repair and recovery from spinal injury.

نویسندگان

  • Marion Murray
  • D Kim
  • Y Liu
  • C Tobias
  • A Tessler
  • I Fischer
چکیده

The effects of transplantation of fibroblasts genetically modified to produce brain derived neurotrophin factor (Fb/BDNF) on rescue of axotomized neurons, axonal growth and recovery of function was tested in a lateral funiculus lesion model in adult rats. Operated control animals included those in which the lesion was filled with gelfoam implant (Hx) and those in which the cavity was filled with unmodified fibroblasts (Fb). Both Fb/BDNF and Fb transplants survived and filled the lesion site. Unoperated control groups showed a marked retrograde death of Red nucleus neurons contralateral to the lesion; Fb/BDNF recipients showed a significant rescue effect. Anterograde and retrograde labeling studies indicated no regeneration of rubrospinal axons into the lesion/transplant in operated control animals, but regeneration into, around, and through the transplant into the host was seen in the Fb/BDNF recipients. All animals showed deficits on the more challenging behavioral tests but the Fb/BDNF recipients showed fewer deficits, particularly in tests of spontaneous vertical exploration, horizontal rope crossing and a sensory test (patch removal). The improved function on these tests in the Fb/BDNF recipients was abolished by a second lateral funiculus lesion rostral to the transport site. These results indicate that delivery of neurotrophic factors by grafting genetically modified cells can improve repair and function after spinal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats

Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...

متن کامل

Transplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury

Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...

متن کامل

A clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury

In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...

متن کامل

Effect of olfactory ensheathing cells (OECs) transplantation on functional recovery in acute phase of spinal contused rats

Introduction: Spinal cord injuries (SCI) lead to permanent irreversible functional deficits.  Poor prognosis of patients is the motivation of searching a treatment for the chronic injury.  Planting stem cells provides us with a promising strategy. In the meanwhile, the use of olfactory ensheathing cells (OECs) has shown very good results.  This study aims at evaluating the effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research. Brain research reviews

دوره 40 1-3  شماره 

صفحات  -

تاریخ انتشار 2002